H(t)=-4.9t^2+27.5t+8.9

Simple and best practice solution for H(t)=-4.9t^2+27.5t+8.9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-4.9t^2+27.5t+8.9 equation:



(H)=-4.9H^2+27.5H+8.9
We move all terms to the left:
(H)-(-4.9H^2+27.5H+8.9)=0
We get rid of parentheses
4.9H^2-27.5H+H-8.9=0
We add all the numbers together, and all the variables
4.9H^2-26.5H-8.9=0
a = 4.9; b = -26.5; c = -8.9;
Δ = b2-4ac
Δ = -26.52-4·4.9·(-8.9)
Δ = 876.69
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26.5)-\sqrt{876.69}}{2*4.9}=\frac{26.5-\sqrt{876.69}}{9.8} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26.5)+\sqrt{876.69}}{2*4.9}=\frac{26.5+\sqrt{876.69}}{9.8} $

See similar equations:

| X’2+3x-4=6 | | (5x+3)=8x+(15x-7) | | 44=4x12 | | 1/3x+1/6x-1=8 | | 1x+1x+14=16 | | n²=16n-63 | | -p/3+6=0 | | 2x-1x+3=-8 | | 2(y+3)=6 | | 6x+6x+80=80 | | x-13x-3=-57 | | 63=3x+3(3x-19) | | 3x−5/2+8x−12/7=9 | | −x^2+7x−14=0 | | X2-24+48y=0 | | (c-12)=-21 | | −x2+7x−14=0 | | x+2(3x+1)=3(x-3) | | 7w=3-8w+6-w | | 7x-7(-x+4)=56 | | 114=6x+6(-x+7) | | 43/4+-3/2n=9/4 | | 114=6x+6(-x+70 | | 7x-10x+6=30 | | 5x+22=4x+14 | | 2x+16=6x-40 | | 3x-2(4x-5)=76 | | 7-5m-10m=7+5m | | g21=12 | | -3/4+y=1/3 | | 5x+7(4x-11)=130 | | -27b=-189 |

Equations solver categories